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Who am I? Amanda Turner is a Senior Lecturer in Mathematics and Statistics at Lancaster University,
UK, who was a Visiting Professor at the University of Geneva in 2018/20. Her research interests lie at the
interface of probability theory, complex analysis and mathematical physics. She is particularly interested
in understanding the long-time behaviour of planar random growth processes which arise in physical
settings, such as cell growth and polymer creation.

But what is it useful for ? Random growth clusters in the physical world usually consist of a large
number of particles, each of which is small relative to the size of the cluster. Although the randomness
typically occurs at a microscopic level through the attachment rule for each successive particle, we observe
the clusters at a macroscopic level where we cannot see the individual particles. Random growth processes
are completely unpredictable at the level of particles, however large clusters often exhibit predictable or
‘universal’ behaviour. The aim of studying mathematical models is to extract the principle mechanisms
underlying this universal behaviour. As random growth models can be difficult to analyse mathematically,
computer simulations are used to study properties such as the growth rate or the fractal dimension of the
cluster. For example, it is predicted using computer simulation that diffusion-limited aggregation has a
fractal dimension of 1.71.

In 1998, physicists Hastings and Levitov devised an approach to modelling planar growth in which
they represented growing clusters as compositions of special types of functions, called conformal mappings.
These are functions from the complex plane to itself which locally preserve angles between lines. This
approach provides a way in which techniques from complex analysis can be used to study planar random
growth.

I want more details ! In the simulation, we represent each particle as a small slit (line segment). It
is possible to write down an explicit conformal mapping which takes the exterior unit disk {|z| > 1} to
the exterior of the unit disk with a slit of length d removed {|z| > 1} \ (1, d]. This mapping is used as a
representation of a particle of length d attached to the unit disk at position 1 (Figure 1). The mapping
can be rotated to represent a slit attached at position eiθ for any angle θ ∈ [0, 2π).

Figure 1: The conformal mapping corresponding to a single slit particle attached at 1.

The computer simulation constructs a cluster as follows. Step-by-step it generates a sequence of angles
Θ1,Θ2, · · · ∈ [0, 2π) and lengths d1, d2, · · · > 0 according to some rule which depends on the precise physical
model which is to be constructed. For each n ∈ N, let Fn denote the conformal mapping corresponding to a
slit of length dn attached at angle Θn. A sequence of conformal bijections Φn : {|z| > 1} → {|z| > 1}\Kn

is constructed by setting Φ0(z) = z and recursively defining

Φn(z) = Φn−1 ◦ Fn(z) = F1 ◦ · · · ◦ Fn(z).

Note that K0 = {|z| ≤ 1} and Kn = Kn−1 ∪Φn−1(eiΘn(1, 1 + dn]), so the sequence K0 ⊂ K1 ⊂ K2 ⊂ · · ·
represents a growing cluster where the unit disk K0 is the seed particle and at time n the particle Pn =
Φn−1(eiΘn(1, 1 + dn]) is added to the cluster (Figure 2). A cluster consisting of n particles is then given
by the image of the circle {|z| = 1} under the map Φn.
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Figure 2: Diagram illustrating how growing clusters can be constructed as compositions of conformal
mappings.
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